
EXERCICE 2

On considère la série statistique de notes sur 20: 20,18,15,17,16,19,2,7,9, 10.

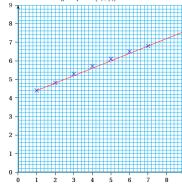
- 1. Déterminer une médiane Med et les quartiles Q_1 et Q_3 de la série statistique.
- ${\bf 2.}\;$ Calculer les valeurs de la moyenne et de l'écart-type, arrondies à 0,01 près.
- 3. Calculer le pourcentage de notes en-dessous de 15. On donnera un résultat arrondi à 0,01% près.

Baccalauréat STMG Antilles–Guyane 18 juin 2014

EXERCICE 2 5 points

Cet exercice est composé de deux parties indépendantes.

Le tableau ci-dessous donne l'évolution, par tranches de cinq années, de la population mondiale (en milliards) entre 1980 et 2010.

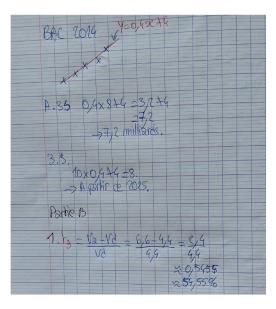

Année	1980	1985	1990	1995	2000	2005	2010
Rang de l'année : x_i	1	2	3	4	5	6	7
Nombre d'habitants (en milliards) : y_i	4,4	4,8	5,3	5,7	6,1	6,5	6,8

Partie A

- 1. Représenter le nuage de points $(x_i; y_i)$ associé au tableau ci-dessus sur le repère donné en appaye 1
- **2.** Déterminer une équation de la droite d'ajustement affine de *y* en *x* obtenue par la méthode des moindres carrés. Les coefficients obtenus seront arrondis au centième.
- 3. On modélise l'évolution de l'effectif y de la population mondiale, exprimé en milliards, en fonction du rang x de l'année par l'expression y=0,4x+4.
 - a. Représenter graphiquement, dans le repère donné en annexe 1, la droite traduisant cette évolution.

Partie A

1. Représentons ci-dessous le nuage de points $(x_i; y_i)$ associé au tableau ci-dessus .


- 2. Une équation de la droite d'ajustement affine de y en x obtenue par la méthode des moindres carrés, obtenue à la calculatrice, est : $\boxed{y = 0.41x + .03}$ (en arrondissant les coefficients à 0.01
- 3. On modélise l'évolution de l'effectif y de la population mondiale, exprimé en milliards, en fonction du rang x de l'année par l'expression y=0,4x+4.
- a. La droite est représentée ci-dessus.

- **b.** En utilisant le modèle ci-dessus, estimer l'effectif de la population mondiale en 2015.
- c. Selon ce modèle, à partir de quelle année la population mondiale devrait-elle dépasser 8 milliards d'habitants?

Partie B

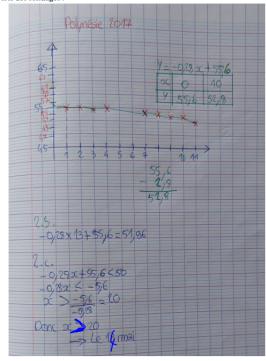
À partir des données fournies dans le tableau de la partie A :

- 1. Calculer le taux global d'évolution de la population mondiale entre 1980 et 2010, exprimé en pourcentage et arrondi à $0.01\,\%$.
- 2. Calculer le taux moyen annuel d'évolution de la population mondiale entre 1980 et 2010, exprimé en pourcentage et arrondi à 0,01%.

∽ Baccalauréat STMG Polynésie 13 juin 2017 ∾

EXERCICE 1 (5 points)

Des sondages quotidiens ont été effectués avant le second tour d'une élection opposant deux candidats A et B. Les intentions de votes, en pourcentage, pour le candidat A sont données dans le tableau suivant :


Dates:	24/04	25/04	26/04	27/04	30/04	01/05	02/05	03/05	04/05
Rang du jour x_l	1	2	3	4	7	8	9	10	11
Pourcentage y_l	55	55	54,5	55	54	53,5	53	53	52

Par exemple, le 24 avril les intentions de votes pour le candidat A étaient de $55\,\%$ et pour le candidat B de $45\,\%$

Le scrutin aura lieu le 6 mai. Comme il est interdit de publier des résultats de sondages les deux derniers jours avant le scrutin, on ne dispose pas des sondages pour le 5 et le 6 mai.

Le nuage de points de coordonnées $(x_l; y_l)$ pour i variant de $\hat{1}$ à 11, est donné en Annexe 1 à rendre avec la copie.

- À l'aide de la calculatrice, déterminer, par la méthode des moindres carrés, une équation de la droite d'ajustement de y en x (arrondir les coefficients au millième).
- 2. On décide d'ajuster le nuage avec la droite D d'équation y = -0.28x + 55.6.
 - a. Tracer la droite D sur le graphique figurant sur Annexe.
 - b. Déterminer la valeur prévue par ce modèle le 6 mai, jour de l'élection.
 - c. Si l'élection n'avait pas eu lieu le 6 mai, d'après ce modèle, à partir de quelle date le candidat B serait-il passé en tête des sondages?

