<u>Chapitre 3</u>: Fonction dérivée d'une fonction polynôme

Définition et propriété : Soient a, b, c et d quatre nombres réels.

Soit f la fonction définie sur \mathbb{R} par $f(x) = ax^3 + bx^2 + cx + d$.

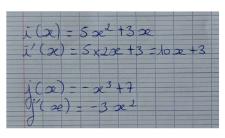
On appelle fonction dérivée de f, la fonction notée f', définie sur \mathbb{R} par $f'(x) = 3ax^2 + 2bx + c$.

Exemples:

• f définie sur \mathbb{R} par f(x) = 8

Pour tout
$$x \in \mathbb{R}$$
, $f'(x) =\bigcirc$

• g définie sur \mathbb{R} par g(x) = -2x + 4


Pour tout
$$x \in \mathbb{R}$$
, $g'(x) = \dots 2$

• h définie sur \mathbb{R} par $h(x) = 8x^2 - 5$

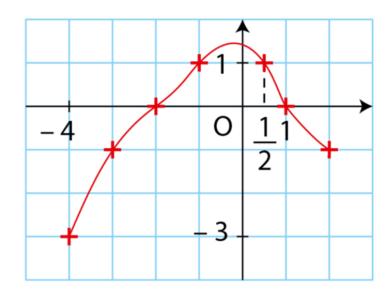
Pour tout
$$x \in \mathbb{R}$$
, $h'(x) = \dots$

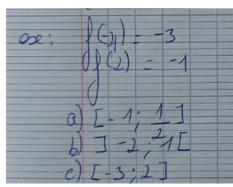
• p définie sur \mathbb{R} par $p(x) = 6x^3 + 9x$

Pour tout
$$x \in \mathbb{R}$$
, $p'(x) = \dots \mid 8 \times 1 + 9$

Exercice 2

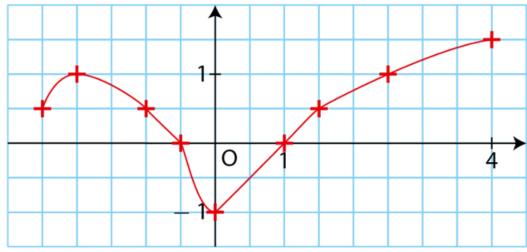
f est la fonction définie sur l'intervalle [-4; 2]


par la courbe dans le repère ci-contre.


Résoudre graphiquement les inéquations :

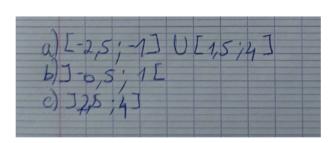
a)
$$f(x) \ge 1$$

b)
$$f(x) > 0$$


c)
$$f(x) \ge -1$$

Exercice 3

g est la fonction définie sur l'intervalle [-2,5;4]par la courbe dans le repère ci-dessous.



Résoudre graphiquement chaque inéquation.

a)
$$g(x) \ge 0.5$$
 b) $g(x) < 0$ **c)** $g(x) > 1$

b)
$$q(x) < 0$$

c)
$$g(x) > 1$$

