Question 1

Soit u une suite géométrique de raison 2 et de premier terme $u_0=5$. Calculer u_3 et u_4 .

Question 3

Soit w une suite définie par $w_0=1$ et $w_{n+1}=2w_n+n$, $n\in\mathbb{N}$. Calculer w_4 .

Question 2

Soit v la suite définie par $v_0=4$ et $v_{n+1}=v_n-2$, $n\in\mathbb{N}$. Calculer v_5 et v_6 .

Question 3: $W_1 = W_{0+1} = 2 W_{0+0} = 2 \times 1 + 0 = 2$ $W_2 = W_{1+1} = 2 W_{1} + 1 = 2 \times 2 + 1 = 5$ $W_3 = W_{2+1} = 2 W_{2} + 2 = 2 \times 5 + 2 = 12$ $W_4 = W_{3+1} = 2 W_{3} + 3 = 2 \times 12 + 5 = 2$

Exo	type bac Pondichéry 2017:
٦.	0. U1 = 542 000 x (143) = 542 000 x 1,03 700) = [558 260]
	6- Un +1 = un x 1,03 (Un) est une suite géométrique de raison 1,03.
	$C - Un = Vo \times q^n$ $[Un = 542000 \times 1,03^n]$
	d- T= C2 * 1.03)

2. 4.542000 x 1,035 2 628327

car 2021 - 2016+(3).

3.

U 542000 557260 575007 592257 610026 623327

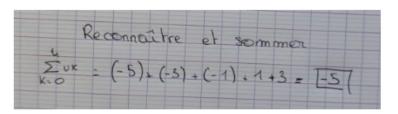
V 62500 VRAI VRAI VRAI VRAI VRAI FAUX

b. Cet algorithme determine le nombre d'anneis pour dépasser 625000 molodes

Reconnaitre et sommer

Soit $(u_n)_{n \in \mathbb{N}}$, la suite définie pour tout entier naturel par : $u_n = 2n - 5$.

Soit $(v_n)_{n \in \mathbb{N}}$, la suite définie pour tout entier naturel par : $v_n = 5 \times 0.4^n$.


Soit $(w_n)_{n \in \mathbb{N}}$, la suite définie pour tout entier naturel par : $w_n = 1 - 3 \times 0$, 1^n .

- 1. Déterminer la nature de chacune des trois suites.
- 2. Calculer

$$\sum_{k=0}^{4} u_k$$

$$\sum_{k=1}^{5} v_k$$

$$\sum_{k=2}^{4} w_k$$

